3.1026 \(\int \frac {(a+i a \tan (e+f x))^{5/2}}{(c-i c \tan (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=155 \[ -\frac {2 i a^{5/2} \tan ^{-1}\left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{c^{3/2} f}+\frac {2 i a^2 \sqrt {a+i a \tan (e+f x)}}{c f \sqrt {c-i c \tan (e+f x)}}-\frac {2 i a (a+i a \tan (e+f x))^{3/2}}{3 f (c-i c \tan (e+f x))^{3/2}} \]

[Out]

-2*I*a^(5/2)*arctan(c^(1/2)*(a+I*a*tan(f*x+e))^(1/2)/a^(1/2)/(c-I*c*tan(f*x+e))^(1/2))/c^(3/2)/f+2*I*a^2*(a+I*
a*tan(f*x+e))^(1/2)/c/f/(c-I*c*tan(f*x+e))^(1/2)-2/3*I*a*(a+I*a*tan(f*x+e))^(3/2)/f/(c-I*c*tan(f*x+e))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 155, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3523, 47, 63, 217, 203} \[ -\frac {2 i a^{5/2} \tan ^{-1}\left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{c^{3/2} f}+\frac {2 i a^2 \sqrt {a+i a \tan (e+f x)}}{c f \sqrt {c-i c \tan (e+f x)}}-\frac {2 i a (a+i a \tan (e+f x))^{3/2}}{3 f (c-i c \tan (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[e + f*x])^(5/2)/(c - I*c*Tan[e + f*x])^(3/2),x]

[Out]

((-2*I)*a^(5/2)*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x]])])/(c^(3/2)*f)
 - (((2*I)/3)*a*(a + I*a*Tan[e + f*x])^(3/2))/(f*(c - I*c*Tan[e + f*x])^(3/2)) + ((2*I)*a^2*Sqrt[a + I*a*Tan[e
 + f*x]])/(c*f*Sqrt[c - I*c*Tan[e + f*x]])

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3523

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[(a*c)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f,
m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {(a+i a \tan (e+f x))^{5/2}}{(c-i c \tan (e+f x))^{3/2}} \, dx &=\frac {(a c) \operatorname {Subst}\left (\int \frac {(a+i a x)^{3/2}}{(c-i c x)^{5/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {2 i a (a+i a \tan (e+f x))^{3/2}}{3 f (c-i c \tan (e+f x))^{3/2}}-\frac {a^2 \operatorname {Subst}\left (\int \frac {\sqrt {a+i a x}}{(c-i c x)^{3/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {2 i a (a+i a \tan (e+f x))^{3/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac {2 i a^2 \sqrt {a+i a \tan (e+f x)}}{c f \sqrt {c-i c \tan (e+f x)}}+\frac {a^3 \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+i a x} \sqrt {c-i c x}} \, dx,x,\tan (e+f x)\right )}{c f}\\ &=-\frac {2 i a (a+i a \tan (e+f x))^{3/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac {2 i a^2 \sqrt {a+i a \tan (e+f x)}}{c f \sqrt {c-i c \tan (e+f x)}}-\frac {\left (2 i a^2\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {2 c-\frac {c x^2}{a}}} \, dx,x,\sqrt {a+i a \tan (e+f x)}\right )}{c f}\\ &=-\frac {2 i a (a+i a \tan (e+f x))^{3/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac {2 i a^2 \sqrt {a+i a \tan (e+f x)}}{c f \sqrt {c-i c \tan (e+f x)}}-\frac {\left (2 i a^2\right ) \operatorname {Subst}\left (\int \frac {1}{1+\frac {c x^2}{a}} \, dx,x,\frac {\sqrt {a+i a \tan (e+f x)}}{\sqrt {c-i c \tan (e+f x)}}\right )}{c f}\\ &=-\frac {2 i a^{5/2} \tan ^{-1}\left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{c^{3/2} f}-\frac {2 i a (a+i a \tan (e+f x))^{3/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac {2 i a^2 \sqrt {a+i a \tan (e+f x)}}{c f \sqrt {c-i c \tan (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 7.58, size = 184, normalized size = 1.19 \[ \frac {2 a^2 \cos (e+f x) (\tan (e+f x)-i)^2 \sqrt {a+i a \tan (e+f x)} \left (\cos \left (\frac {1}{2} (e-2 f x)\right )-i \sin \left (\frac {1}{2} (e-2 f x)\right )\right ) \left (\sin \left (\frac {1}{2} (e+4 f x)\right )+i \cos \left (\frac {1}{2} (e+4 f x)\right )\right ) \left (2 i \sin (2 (e+f x))-\cos (2 (e+f x))+3 \cos (e+f x) \tan ^{-1}\left (e^{i (e+f x)}\right ) (\cos (2 (e+f x))-i \sin (2 (e+f x)))-1\right )}{3 c f \sqrt {c-i c \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[e + f*x])^(5/2)/(c - I*c*Tan[e + f*x])^(3/2),x]

[Out]

(2*a^2*Cos[e + f*x]*(Cos[(e - 2*f*x)/2] - I*Sin[(e - 2*f*x)/2])*(-1 - Cos[2*(e + f*x)] + 3*ArcTan[E^(I*(e + f*
x))]*Cos[e + f*x]*(Cos[2*(e + f*x)] - I*Sin[2*(e + f*x)]) + (2*I)*Sin[2*(e + f*x)])*(I*Cos[(e + 4*f*x)/2] + Si
n[(e + 4*f*x)/2])*(-I + Tan[e + f*x])^2*Sqrt[a + I*a*Tan[e + f*x]])/(3*c*f*Sqrt[c - I*c*Tan[e + f*x]])

________________________________________________________________________________________

fricas [B]  time = 0.52, size = 366, normalized size = 2.36 \[ -\frac {3 \, c^{2} f \sqrt {\frac {a^{5}}{c^{3} f^{2}}} \log \left (\frac {2 \, {\left (4 \, {\left (a^{2} e^{\left (3 i \, f x + 3 i \, e\right )} + a^{2} e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} + {\left (2 i \, c^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} - 2 i \, c^{2} f\right )} \sqrt {\frac {a^{5}}{c^{3} f^{2}}}\right )}}{a^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + a^{2}}\right ) - 3 \, c^{2} f \sqrt {\frac {a^{5}}{c^{3} f^{2}}} \log \left (\frac {2 \, {\left (4 \, {\left (a^{2} e^{\left (3 i \, f x + 3 i \, e\right )} + a^{2} e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} + {\left (-2 i \, c^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + 2 i \, c^{2} f\right )} \sqrt {\frac {a^{5}}{c^{3} f^{2}}}\right )}}{a^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + a^{2}}\right ) - {\left (-4 i \, a^{2} e^{\left (5 i \, f x + 5 i \, e\right )} + 8 i \, a^{2} e^{\left (3 i \, f x + 3 i \, e\right )} + 12 i \, a^{2} e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}}{6 \, c^{2} f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(5/2)/(c-I*c*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

-1/6*(3*c^2*f*sqrt(a^5/(c^3*f^2))*log(2*(4*(a^2*e^(3*I*f*x + 3*I*e) + a^2*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x
+ 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)) + (2*I*c^2*f*e^(2*I*f*x + 2*I*e) - 2*I*c^2*f)*sqrt(a^5/(c^3*f
^2)))/(a^2*e^(2*I*f*x + 2*I*e) + a^2)) - 3*c^2*f*sqrt(a^5/(c^3*f^2))*log(2*(4*(a^2*e^(3*I*f*x + 3*I*e) + a^2*e
^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)) + (-2*I*c^2*f*e^(2*I*f*x +
 2*I*e) + 2*I*c^2*f)*sqrt(a^5/(c^3*f^2)))/(a^2*e^(2*I*f*x + 2*I*e) + a^2)) - (-4*I*a^2*e^(5*I*f*x + 5*I*e) + 8
*I*a^2*e^(3*I*f*x + 3*I*e) + 12*I*a^2*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x +
2*I*e) + 1)))/(c^2*f)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{\frac {5}{2}}}{{\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(5/2)/(c-I*c*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(f*x + e) + a)^(5/2)/(-I*c*tan(f*x + e) + c)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 0.24, size = 348, normalized size = 2.25 \[ \frac {\sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (-1+i \tan \left (f x +e \right )\right )}\, a^{2} \left (9 i \ln \left (\frac {c a \tan \left (f x +e \right )+\sqrt {c a \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {c a}}{\sqrt {c a}}\right ) \left (\tan ^{2}\left (f x +e \right )\right ) a c +3 \ln \left (\frac {c a \tan \left (f x +e \right )+\sqrt {c a \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {c a}}{\sqrt {c a}}\right ) \left (\tan ^{3}\left (f x +e \right )\right ) a c -3 i \ln \left (\frac {c a \tan \left (f x +e \right )+\sqrt {c a \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {c a}}{\sqrt {c a}}\right ) a c -12 i \sqrt {c a \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {c a}\, \tan \left (f x +e \right )-9 \ln \left (\frac {c a \tan \left (f x +e \right )+\sqrt {c a \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {c a}}{\sqrt {c a}}\right ) \tan \left (f x +e \right ) a c -8 \sqrt {c a \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {c a}\, \left (\tan ^{2}\left (f x +e \right )\right )+4 \sqrt {c a \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {c a}\right )}{3 f \,c^{2} \sqrt {c a \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \left (\tan \left (f x +e \right )+i\right )^{3} \sqrt {c a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))^(5/2)/(c-I*c*tan(f*x+e))^(3/2),x)

[Out]

1/3/f*(a*(1+I*tan(f*x+e)))^(1/2)*(-c*(-1+I*tan(f*x+e)))^(1/2)*a^2/c^2*(9*I*ln((c*a*tan(f*x+e)+(c*a*(1+tan(f*x+
e)^2))^(1/2)*(c*a)^(1/2))/(c*a)^(1/2))*tan(f*x+e)^2*a*c+3*ln((c*a*tan(f*x+e)+(c*a*(1+tan(f*x+e)^2))^(1/2)*(c*a
)^(1/2))/(c*a)^(1/2))*tan(f*x+e)^3*a*c-3*I*ln((c*a*tan(f*x+e)+(c*a*(1+tan(f*x+e)^2))^(1/2)*(c*a)^(1/2))/(c*a)^
(1/2))*a*c-12*I*(c*a*(1+tan(f*x+e)^2))^(1/2)*(c*a)^(1/2)*tan(f*x+e)-9*ln((c*a*tan(f*x+e)+(c*a*(1+tan(f*x+e)^2)
)^(1/2)*(c*a)^(1/2))/(c*a)^(1/2))*tan(f*x+e)*a*c-8*(c*a*(1+tan(f*x+e)^2))^(1/2)*(c*a)^(1/2)*tan(f*x+e)^2+4*(c*
a*(1+tan(f*x+e)^2))^(1/2)*(c*a)^(1/2))/(c*a*(1+tan(f*x+e)^2))^(1/2)/(tan(f*x+e)+I)^3/(c*a)^(1/2)

________________________________________________________________________________________

maxima [B]  time = 0.57, size = 386, normalized size = 2.49 \[ \frac {{\left (-6 i \, a^{2} \arctan \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ), \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 1\right ) - 6 i \, a^{2} \arctan \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ), -\sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 1\right ) - 4 i \, a^{2} \cos \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 12 i \, a^{2} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 3 \, a^{2} \log \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 1\right ) - 3 \, a^{2} \log \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )^{2} - 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 1\right ) + 4 \, a^{2} \sin \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) - 12 \, a^{2} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )\right )} \sqrt {a}}{6 \, c^{\frac {3}{2}} f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(5/2)/(c-I*c*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

1/6*(-6*I*a^2*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), sin(1/2*arctan2(sin(2*f*x + 2*e),
cos(2*f*x + 2*e))) + 1) - 6*I*a^2*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), -sin(1/2*arcta
n2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) - 4*I*a^2*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) +
12*I*a^2*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 3*a^2*log(cos(1/2*arctan2(sin(2*f*x + 2*e), co
s(2*f*x + 2*e)))^2 + sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 2*sin(1/2*arctan2(sin(2*f*x + 2*
e), cos(2*f*x + 2*e))) + 1) - 3*a^2*log(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + sin(1/2*arcta
n2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 - 2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) + 4*a^
2*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 12*a^2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x +
2*e))))*sqrt(a)/(c^(3/2)*f)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}{{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(e + f*x)*1i)^(5/2)/(c - c*tan(e + f*x)*1i)^(3/2),x)

[Out]

int((a + a*tan(e + f*x)*1i)^(5/2)/(c - c*tan(e + f*x)*1i)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (i a \left (\tan {\left (e + f x \right )} - i\right )\right )^{\frac {5}{2}}}{\left (- i c \left (\tan {\left (e + f x \right )} + i\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))**(5/2)/(c-I*c*tan(f*x+e))**(3/2),x)

[Out]

Integral((I*a*(tan(e + f*x) - I))**(5/2)/(-I*c*(tan(e + f*x) + I))**(3/2), x)

________________________________________________________________________________________